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We define a novel numerical molecular representation, called the molecular hashkey, that
captures sufficient information about a molecule to predict pharmaceutically interesting
properties directly from three-dimensional molecular structure. The molecular hashkey
represents molecular surface properties as a linear array of pairwise surface-based comparisons
of the target molecule against a common ‘basis-set’ of molecules. Hashkey-measured molecular
similarity correlates well with direct methods of measuring molecular surface similarity. Using
a simple machine-learning technique with the molecular hashkeys, we show that it is possible
to accurately predict the octanol-water partition coefficient, log P. Using more sophisticated
learning techniques, we show that an accurate model of intestinal absorption for a set of drugs
can be constructed using the same hashkeys used in the aforementioned experiments. Once a
set of molecular hashkeys is calculated, its use in the training and testing of property-based
models is very fast. Further, the required amount of data for model construction is very small.
Neural network-based hashkey models trained on data sets as small as 30 molecules yield
statistically significant prediction of molecular properties. The lack of a requirement for large
data sets lends itself well to the prediction of pharmaceutically relevant molecular parameters
for which data generation is expensive and slow. Molecular hashkeys coupled with machine-
learning techniques can yield models that predict key pharmacological aspects of biologically
important molecules and should therefore be important in the design of effective therapeutics.

Introduction

Computational techniques for structure-based drug
design have shown utility in the design and identifica-
tion of ligands of therapeutic targets.1 Iterative structure-
based drug design has yielded potent and specific
ligands for therapeutically relevant targets.2-6 However,
techniques that have been applied to prospective design
of compounds with improved pharmacological profiles
have not shared the same degree of success. Optimiza-
tion of pharmacological properties of lead molecules is
the bottleneck in the development of a clinical candidate
drug. Most potential drugs fail because of deficiencies
in the pharmacological profile of the molecule. The
development of computational methods to accurately
predict pharmacological properties would speed clinical
drug candidate development and more importantly
increase the probability of success in the clinic. This
approach allows for the integrated optimization of
potency/selectivity in parallel with the pharmacological
profile.

Underlying the processes of absorption, distribution,
metabolism, and excretion (ADME) lie at least two
different phenomena: interactions of molecules with
specific proteins (e.g., in metabolism and active trans-
port) and interactions of molecules with bulk solvent-
like systems (e.g., partitioning into a cell membrane).
In the first case, a molecule’s behavior will tend to be

dominated by its propensity to adopt a specific confor-
mation and align itself with respect to complementary
protein binding sites. In the second case, the molecule’s
behavior will be dependent on its ensemble behavior in
a bulk fluid system. In both cases, however, the interac-
tions occur at the junction of molecular surfaces, sug-
gesting that as a sensible first approximation, a three-
dimensional surface-based representation may exist
that satisfies the requirements of computational models
for predicting ADME properties.

In a purely theoretical sense, it should be possible to
predict ADME properties on the basis of molecular
structure alone, since molecules elicit a specific response
from animals of a particular species. For an organism
in a given genetic and environmental state, there is
enough information in a molecular structure for the
organism to “decide” the molecule’s fate. However, two
questions arise. First, how much data (molecule/value
pairs) will be necessary in order to build predictive
models of ADME properties? Second, how can one best
represent the essential characteristics of molecules in
a manner that leads to efficient generalization from
machine-learning techniques?

The definition of a molecular representation that can
capture important aspects of molecules is a critical
aspect in the application of computational methods to
drug design. Currently used methods include two-
dimensional topological descriptors, energetic descrip-
tors, quantum mechanical descriptors, and three-
dimensional field descriptors (see review in ref 7). Two
other methods have been described which describe
molecules based on either the behavior of a molecule in
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a variety of biochemical assays8 or the molecular dock-
ing of a target molecule to a variety of different protein
sites9 to generate “fingerprints” which were used to
determine the relationships between molecules. Molec-
ular representations have been used to determine
quantitative structure-activity/property relationships10

as well as to predict physicochemical properties of
molecules such as partition coefficients and solubili-
ties.11-13 Recently, surface property-based descriptors
have been applied to the prediction of intestinal absorp-
tion.14

In this work we define a novel numerical molecular
representation, termed the molecular hashkey, which
represents a general and compact method to represent
the surface properties of molecules. A hashkey may
always be computed for a molecule, unlike some other
modeling systems that use fragment-based representa-
tions (e.g., ClogP). After hashkey calculation, the use
of the hashkey in model generation and prediction is
very fast. We show that molecular hashkeys can be used
to predict a measure of molecular surface similarity that
is well-correlated with specific binding to proteins.15,16

To examine the power of the molecular hashkey in the
prediction of pharmacological properties of molecules,
we used data available in MDL’s Comprehensive Clini-
cal Medicinal Chemistry17 database to generate models
to predict the octanol-water partition coefficient (log
P) as accurately as currently available methods. Finally,
using a structurally diverse set of drugs selected because
they are predominantly absorbed through passive pro-
cesses and are not subject to early metabolism,14 we
used molecular hashkeys to predict human intestinal
absorption.

Theory
In this section, we will present an abbreviated de-

scription of molecular hashkeys along with the applica-
tions to predicting molecular similarity and log P. The
Experimental Section will give details of the computa-
tional methodology.

Molecular Hashkeys. A molecular hashkey18 is a
real-valued vector of fixed dimension that captures
information about the surface properties of a molecule.
A molecular hashkey has the property that molecules
with similar hashkeys will appear similar based on
observation of their surfaces. Molecules with identical
surface properties will have identical hashkeys, inde-
pendent of the underlying atomic scaffolding.

Given a molecule M, its N-dimensional hashkey (H1,
H2, ..., HN) is computed by calculating its molecular
surface similarity to a set of N basis molecules. The
basis molecules are in low energy-fixed conformations.
M is flexibly aligned to each Bi of the set of basis
molecules (B1...BN) to maximize molecular surface simi-
larity, and the best match yields the surface similarity
value that becomes Hi.

The molecular surface similarity computation used
here is similar to published methods16,19,20 and will be
described in detail in the Experimental Section. The
surface similarity values range from 0 to 1.0, with 0
denoting maximal dissimilarity and 1.0 denoting iden-
tity. In this work, we used no other representation
besides molecular hashkeys to represent the molecules
whose properties we wanted to predict.

Initial Hashkey Representations. Figure 1 shows
the 20 molecules used as the basis set in initial tests of
the molecular hashkey approach. These were selected
randomly from the set of CMC17 molecules that had

Figure 1. Twenty basis molecules used for molecular hashkeys arranged by high to low measured log P.
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measured log P’s (referred to as the full CMC set). It
should be noted that they represent a wide variety of
molecular shapes, sizes, polarities, hydrophobicities, and
other physicochemical properties. Figure 2 shows a
molecule (upper left) with three molecules (from the full
CMC set) that have the most similar hashkeys. The
molecules shown appear to share structural similarity
both in terms of overall shape and in terms of substit-
uents with similar physicochemical properties (e.g.,
hydrophilic moieties such as hydroxyls and sulfona-
mides).

Experimental Results

Four sets of experiments were performed. First, to
demonstrate that molecular hashkeys correlate with
specific binding to protein active sites, using our initial
20-member basis set, a comparison of molecular hash-
key distances was made to directly computed molecular
similarities. Second, to demonstrate that the represen-
tation is suitable for computing properties related to
solvent interactions, again using our initial 20-member
basis set, log P values were predicted using varying
numbers of molecules in the training sets for model
building. Third, experiments were performed in which
the number and composition of the basis set members
were varied in order to evaluate the importance of basis
set size and composition in using molecular hashkeys
as a surface-based descriptor in the prediction of log P.
Last, to demonstrate the utility of the representation
in predicting ADME properties of molecules, we used
molecular hashkeys to predict human intestinal absorp-
tion for a structurally diverse set of drugs.

Molecular Similarities. Beyond interactions with
solvent systems, for molecular hashkeys to be useful in
predicting ADME properties, it must also be possible
to compute values correlated with specific binding
events. As detailed in the Experimental Section, the
surface similarity function that underlies the molecular
hashkeys is related to other surface-based molecular
representations of similarity.16,19,20 These computational
methods use three-dimensional metrics to model the
three-dimensional relationships or similarities between
molecules. The results of the computational approaches
have been confirmed in protein-ligand systems where

the relationships between topologically different mol-
ecules have been determined experimentally in X-ray
crystallographic studies,21 suggesting that three-dimen-
sional metrics can effectively model the three-dimen-
sional properties that play a role in molecular recogni-
tion. To the extent that molecular hashkey distance
correlates with a direct measure of molecular surface
similarity of the sort used here, we gain confidence that
the hashkey representation captures information rel-
evant to specific protein binding events.

We measured the correlation between the Euclidean
distance of the hashkeys of molecule pairs to molecular
surface similarity. Figure 3 shows a plot relating
hashkey distance to direct molecular surface similarity
for 1600 randomly chosen pairs of molecules (chosen
from the 863 used in the log P experiment). The x-axis
is molecular surface similarity, and the y-axis is 1.0 less
the hashkey distance (so that 1.0 indicates a perfect
match in both cases). The correlation, while being
somewhat spread out toward the lower surface similar-
ity values, is highly statistically significant (p , 0.01,
based on PRCC16).

This correlation supports the notion that information
in molecular hashkeys can be related to specific binding
to protein active sites. At the very least, in terms of a
practical application of molecular hashkeys, one can
speed up three-dimensional similarity searches of large
databases significantly. By precomputing hashkeys for
molecules in a large database and then computing the
hashkey for a probe molecule, one can very rapidly
identify a small subset of molecules in the database that
may have high molecular surface similarity to the probe
molecule. In this example, one can eliminate 80% of the
computationally expensive molecular surface similarity
comparisons performed and still retain 80% of the
molecules that score better than 0.70 in terms of direct
molecular surface similarity. More significant reductions
in computational time are possible where higher surface
similarity values are desired. Further optimization of
the hashkey basis set (both size and composition) will
enhance this benefit.

Log P Prediction. Computational approaches to

Figure 2. Four molecules from the CMC data set with similar
hashkeys. Surface similarity measurements are shown for each
molecule as compared to the reference molecule.

Figure 3. Plot of molecular surface similarity versus (1.0 -
hashkey distance) for 1600 pairs of molecules chosen at
random from the CMC data set.
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predicting octanol-water partition coefficients typically
work by one of two general methods: by analyzing the
fragments of a molecule in a two-dimensional topological
manner11 or by calculating parameters which represent
specific molecular properties12,13 and using mathemati-
cal models to fit the data. Molecular hashkeys are
sensitive only to three-dimensional surface properties.
Of the molecules in the CMC,17 863 compounds with
measured log P values had molecular structures that
were amenable to the computations involved (see the
Experimental Section for details). For each molecule,
the hashkey computation was performed once, and this
hashkey was used in all subsequent experiments.

We employed a very simple machine-learning tool
called a weighted K nearest neighbor (KNN) classifier22

to construct computational models of log P using mo-
lecular hashkeys as input. The KNN method was chosen
initially for ease of application, and if a simple learning
method can develop accurate models for a particular
parameter, then it is likely that more sophisticated
learning methods will perform even better. A KNN
classifier holds a collection of training data consisting
of vectors that represent objects along with associated
values. The classifier assigns a value to an input object
based on the “votes” of the K nearest “neighbors” to the
input object from the training data. So, if K ) 3, and
the two closest examples to an input object are of class
A and one is from class B, the input object is assigned
to class A. A weighted KNN classifier can be used for
generating real-valued output. With this modification,
the classifier returns the weighted output values of the
K nearest neighbors to the input object, where the
weight is simply the inverse of the distance to each
neighbor (plus a small constant to avoid division by
zero). The output is normalized by the sum of the
weights.

Table 1 summarizes the results of log P prediction
using KNN classifiers constructed with various amounts
of data. The first row shows the result for a leave-one-
out cross-validation, where 863 classifiers were con-
structed, each by withholding one data point that was
then predicted. The optimum value for K was 5 and was
determined empirically. The mean predicted error of log
P was 0.94, with a pair rank correlation coefficient
(PRCC) of 0.85, which is highly statistically significant
(p , 0.01, see the Experimental Section for details on
the PRCC and statistical significance). The next rows
show the degradation of performance as less data is
used. It should be noted that performance degrades very
little; just 200 molecules yield a model of log P with a
mean error of 1.15.

As an independent test of log P prediction using a
fragment-based method, we chose to use the widely used
ClogP program.11,23 Table 2 summarizes the perfor-
mance of the ClogP11,23 program on the 799 molecules
(of the original 863) for which the computation termi-

nated successfully. The overall performance had a 0.51
log unit of mean error and a PRCC of 0.96, which may
appear to be significantly better than the hashkey
technique. However, 635 of the 799 molecules in the set
were part of the ClogP11,23 tuning set. Performance on
those 635 had a mean error of 0.39 log unit. Perfor-
mance on the 134 that were novel had a 0.97 log unit
mean error, with a PRCC of 0.89. This level of perfor-
mance is indistinguishable from that of the hashkey
technique for molecules not used in model construction.
Figures 4 and 5 show plots of measured versus predicted
log P for the 863 hashkey-based predictions from the
cross-validation experiment and the 134 ClogP11,23

predictions on nontraining molecules.
This experiment illustrates several points. The hash-

key technique is able to perform as well as ClogP on

Table 1. Performance of Log P Prediction Using Molecular
Hashkeys with a Weighted KNN Classifier (K ) 5)

hashkey
N

training
N

testing
mean error
(log units)

PRCC
(1.0 log)

KNN cross-validation 862 1 (863 times) 0.94 0.85
KNN 400 × 2 400 463 (2 times) 1.03 0.83
KNN 200 × 4 200 663 (4 times) 1.15 0.80
KNN 100 × 8 100 763 (8 times) 1.23 0.77

Figure 4. Plot of measured log P versus predicted log P for
863 molecules using the molecular hashkey method with a
basis set size of 20 molecules.

Figure 5. Plot of measured log P versus ClogP for 134
molecules, which were not part of the ClogP training set.

Table 2. Performance of ClogP Prediction

ClogP
N training,
N testing

mean error
(log units)

PRCC
(1.0 log)

all compounds >9000, 799 0.51 0.96
training compounds >9000, 665 0.39 0.98
testing compounds >9000, 134 0.97 0.89
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this population of biologically relevant molecules and
will give a prediction for every molecule in the set, in
contrast to the ClogP method which fails if a particular
fragment is missing. In addition, using the hashkey
technique, it is not necessary to use a tremendous
amount of data to make accurate predictions. A small
number of hundreds of molecules are sufficient to train
an accurate model, whereas ClogP uses over 9000
molecules in its training set. This observation is impor-
tant because in most medicinal chemistry drug develop-
ment projects it is unlikely that with the relatively low
throughput of most ADME assays, there would be
enough time or resources to generate the large amounts
of data (e.g., 9000 values) to create a model that could
be implemented in the project. Furthermore, it is likely
that the surface-sensitive approach embodied by the
hashkey technique is capturing the relevant information
about molecules with respect to interaction with solvent
systems, since no complex parametrization of the mol-
ecules with respect to conjugation, intramolecular hy-
drogen bonding, shielding, or other effects was necessary
to achieve this level of performance.

The ability to build high-quality predictive models
using relatively small and carefully selected data sets
can be enhanced using more sophisticated machine-
learning techniques. Models of log P were constructed
using a neural network24 and relatively small log P data
sets selected from the CMC17 data set, using only
structural diversity as a selection criteria. This roughly
approximates an environment in which early data on a
relatively diverse, small set of molecules from a phar-
macology group would be used to build initial models
in a drug design project. Table 3 shows the results of
these experiments over a range of small training sets.
Using data sets as small as 30 molecules from the
CMC,17 neural network models were constructed that
were nearly as accurate as KNN-based models, which
used an order of magnitude more training data. The
neural networks used were 20-3-1 back-propagation
networks24 with sigmoidal activation functions. The
learning rate for training was 0.2, with a momentum
term of 0.1. Models were trained to within an error
threshold of 0.8 log unit for all training examples. All
parameters were empirically determined.

Effects of Basis Set Size and Composition. The
size and composition of the basis set may influence the
representational power of the hashkeys. If a small basis
set is chosen, the basis molecules may not contain
enough structural information to model relevant phys-
icochemical phenomena. Further, if the basis set mem-
bers are chosen in a contrived manner to bias against
the discrimination of certain critical molecular proper-
ties, their utility in building predictive models will be
reduced. For example, if one were to select basis set
members completely lacking in polar features, models

using hashkeys would be seriously hampered in their
ability to model phenomena in which hydrophilicity or
numbers of acceptors or donors play important roles.
Likewise, a very high degree of redundancy in the basis
set would be tantamount to selecting a very small basis
set and would thus limit the predictive power of models
using hashkeys by missing important areas of chemical
space.

An ideal selection of a basis set would maximize the
orthogonality of the structural properties of the mol-
ecules. However, the strength of the results obtained
with the initial basis set shows that the use of hashkeys
tolerates well the degree of redundancy or bias that may
arise from picking molecules at random from the CMC.
To examine the effects of altering the composition of the
basis sets, several other basis sets were selected ran-
domly from the CMC, varying in size up to 30 molecules.
As an approximation of the standard hashkey computa-
tion, which utilizes fully flexible molecular alignments
to determine surface similarity, hashkeys were com-
puted for these secondary basis sets using rigid align-
ments of minimized conformations. Despite that, the
results of using these basis sets demonstrate the
reproducibility of the ability of hashkeys to generate
statistically significant models for log P. Table 4 shows
the results of five KNN-trained models of log P using
five different and nonoverlapping randomly chosen basis
sets of size 20. The results show that the independent
models deviate only slightly from each other for each
basis set and that a randomly chosen set of basis set
molecules allows sufficient encoding of molecular sur-
face properties to predict log P. The results also dem-
onstrate that despite using a less accurate alignment
technique, the performance of the models on the alter-
native basis sets is still comparable.

Since a randomly chosen basis set is sufficient to
encode the surface properties of a particular molecule
in the molecular hashkey, experiments were performed
to examine the consequences of altering the size of the
hashkey basis set. Figure 6A shows log P model per-
formance using 400 molecules in the training set and
hashkeys created with a rigid hashkey computation
where basis set size was varied from 3 to 30 members.
The experiments demonstrate that, for the purposes of
computing log P, hashkey basis set size was important,
but model performance as measured by changes in mean
error and PRCC reached a plateau well short of 20
molecules for the rigid hashkey computation. Figure 6B
shows log P model performance using 400 molecules in
the training set and hashkeys created using a flexible

Table 3. Performance of Log P Prediction Using Molecular
Hashkeys with a Neural Network with 3 Hidden Units and
Training Sets Selected for Structural Diversity

hashkey
N training,
N testing

mean error
(log units)

PRCC
(1.0 log)

NN 30 30, 833 1.21 0.80
NN 50 50, 813 1.29 0.77
NN 70 70, 793 1.21 0.80
NN 100 100, 763 1.18 0.81

Table 4. Performance of Log P Prediction Using Rigid
Molecular Hashkeys with a Weighted KNN Classifier (K ) 5)
and Randomly Chosen Basis Sets

train, test set size

basis set 400 (×3), 463 100 (×3), 763

1 PRCC (1.0 log) 0.79 0.75
mean error (log units) 1.13 1.24

2 PRCC (1.0 log) 0.80 0.73
mean error (log units) 1.13 1.3

3 PRCC (1.0 log) 0.81 0.76
mean error (log units) 1.12 1.22

4 PRCC (1.0 log) 0.80 0.74
mean error (log units) 1.10 1.27

5 PRCC (1.0 log) 0.80 0.74
mean error (log units) 1.12 1.27
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hashkey computation where the basis set size was
varied from 3 to 20 members. For the flexible hashkey
computation, it is observed that the mean error and
PRCC begin to plateau at 20 molecules at a slightly
higher level of accuracy. Since less information is
encoded in each hashkey basis set member in the rigid
hashkey models, the information contribution of each
additional basis set member is quickly diminished.
Thus, the rigid hashkey models plateau much earlier
than the flexible hashkey model. The overall difference
in maximum accuracy for log P in the range of basis
set sizes examined is fairly small. However, for less
noisy data and more complex properties, one would
expect the difference in accuracy to increase substan-
tially.

Predicting Intestinal Absorption of Drugs. The
foregoing experiments showed that the hashkeys con-
tain sufficient information to predict molecular similari-
ties (which correlate well with specific binding) as well
as log P (a bulk property of molecules). Hashkeys
implicitly contain information about properties of mol-
ecules which may otherwise have to be discovered before
a significant correlation to their physicochemical or
ADME properties can be established. For example, Palm
et al.14 have determined that an excellent nonlinear
correlation existed between the dynamic polar surface
area descriptor and the fraction absorbed (FA) in
humans for a structurally diverse set of drugs. FA for

this set ranged from 0.3 to 100%. The development of
this model (and previous models) required the discovery
of an appropriate molecular descriptor or ad-hoc com-
binations of theoretical descriptors. Using the same data
set used by Palm et al.,14 it can be demonstrated that
hashkeys implicitly contain information relevant to
predicting intestinal absorption for this set of com-
pounds.

The drugs selected by Palm et al.,14 shown in Figure
7, are predominantly absorbed through passive pro-
cesses and are not subject to early metabolism. Fur-
thermore, the molecules are all relatively soluble. We
performed a leave-one-out cross-validation experiment
using hashkeys (as computed above) as the molecular
representation and trained a 20-1-1 back-propagation
neural network using the reported FA data. We used
the PRCC as the measure of the performance of the
model and assumed that relative variances of 10% were
acceptable (reported deviations for the measured FA
ranged from 0.3 to 20%, with a mean of 8.75%). The
PRCC for this experiment, whose predicted versus
measured values are shown in Table 5 and plotted in
Figure 8, was 0.9 (with p , 0.001, a highly statistically
significant result). While the accuracy of the predictions
is not as good as that for a fitted function (as one would
expect; measuring accuracy using molecules whose data
was used to fit the function is analogous to training and
testing a model using the same molecules), the relative
ranking of the drugs based on predicted FA, shown in
Table 6, is very accurate. This is not surprising since
Palm et al. selected these drugs with a bias toward
transepithelial transport phenomena in which bulk
surface properties were the critical factor. We believe
that by breaking down transport phenomena into
discrete factors influencing transport (i.e., Will the
molecule passively diffuse through the lipid bilayer of
the cell membrane? Is it a substrate for an efflux
pump?), we can build more accurate predictive models.
These simpler models can then be composed to predict
biological phenomena for more complex systems involv-
ing a number of these simpler mechanisms. This experi-
ment is a promising indicator of success.

Discussion

In the Introduction it was proposed that the informa-
tion contained in a small molecule is sufficient to yield
a deterministic result in a particular species with
respect to a physiological response. The critical issue
in many machine-learning problems is data representa-
tion. It is theoretically possible to construct predictive
models independent of the representation of the input
objects. However, if the remapping process is sufficiently
complex as to dwarf the signal related to the learning
problem, it will be difficult to generate a good model or
it will require an inordinate amount of data.

The smaller the data set required to generate a
predictive model, the more likely it is that the input
representation is capturing the information relevant to
the learning task in a compact form. For a typical small
molecule of therapeutic relevance, approximately 30
bytes is required in order to fully represent two-
dimensional molecular structure (using a form of
SMILES strings with a reduced alphabet). It would take
approximately 500 bytes to represent the three-dimen-

Figure 6. A. Plot of PRCC (×) and mean error (4) in predicted
log P (relative to measured log P) versus basis set size for rigid
hashkeys computed using basis sets ranging from 3 to 30
members. B. Plot of PRCC (×) and mean error (4) in predicted
log P (relative to measured log P) versus basis set size for
flexible hashkeys computed using basis sets ranging from 3
to 20 members.
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sional structure of the same molecule using a coordinate-
based system. The molecular hashkeys use approxi-
mately 50 bytes per molecule, which is on the same
order as the amount required to capture two-dimen-
sional structure. Molecular hashkeys appear to ef-

ficiently remap molecular structure information to a
representation that is dependent on observable surface
properties. They apparently yield a propitious starting
point from which to do machine learning.

Two other groups have suggested somewhat similar
approaches to the molecular hashkey technique reported

Figure 7. Drugs used in intestinal absorption model construction and verification.

Table 5. Measured versus Predicted Fraction Absorbed

measured (%) predicted (%)

metoprolol 102 59.4
nordiazepam 99 83.9
diazepam 97 99.0
oxprenolol 97 98.1
phenazone 97 97
oxazepam 97 78.5
alprenolol 96 100
practolol 95 70.6
pindolol 92 86.9
ciprofloxacin 69 62.5
metolazone 64 45.6
tranexamicacid 55 74.4
atenolol 54 74.7
sulpiride 36 54.5
mannitol 26 37.7
foscarnet 17 26.3
sulfasalazine 12 37.9
olsalazine 2.3 62.2
lactulose 0.6 20.7
raffinose 0.3 3.3

Figure 8. Plot of measured fraction absorbed of drugs after
administration to humans versus fraction absorbed predicted
via hashkey-based models constructed in leave-one-out cross-
validation.
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here. Kauvar et al.8 described molecules as a “finger-
print” of activities derived from a panel of biochemical
assays. Briem and Kuntz9 based their representations
on molecular docking of small molecules to a variety of
different protein sites to form “fingerprints” and used
them to compute molecular similarities; their results
parallel those reported here to a degree. However, their
system underperformed a two-dimensional-based simi-
larity technique on the benchmark they used; this could
be related to the scoring function employed to evaluate
the quality of molecular dockings.

An important feature of molecular hashkey-based
models, one that differentiates this work from that of
Palm et al.14 and others,11-13,25,26 is that it required no
explicit descriptor of molecular structure other than a
hashkey. Hashkeys are reinforced by these experiments
as a viable representation for analyses across a range
of pharmaceutically relevant properties. Rather than
requiring significant time investment in exploring ad-
hoc descriptors and descriptor combinations, building
usable, prototype- and production-quality structure/
surface-based models of ADME or physicochemical
properties using data sets of tractable size is simply a
matter of using hashkeys in a machine-learning system.

In the drug discovery process, database screening can
be significantly accelerated by using precomputed hash-
keys to subselect relevant compounds from large data-
bases. Furthermore, direct models of physicochemical
processes (certainly log P but perhaps solubility, passive
diffusion, paracellular transport, etc.) can be applied
simultaneously to speed the iterative stages of drug lead
optimization.

Conclusions

The molecular hashkey technique captures sufficient
information about small molecules to predict properties
that depend on two of the principle underlying processes
in the ADME profile of a drug: specific binding to
protein active sites and interaction with solvent sys-
tems. Further, it does so in a representation that is
amenable to unsophisticated machine-learning tech-
niques. The hashkey technique should yield significant
benefits in direct application to specific drug discovery

projects. Additional refinement of the technique coupled
with exploration of larger data sets of ADME param-
eters using more sophisticated machine-learning sys-
tems may yield insight into the underlying phenomena
that currently constitute a largely impenetrable “black
box” of bioavailability in drug discovery.

Experimental Section

This section will give details of the molecular surface
similarity computation as well as the particulars of computing
the molecular hashkeys used in the study.

Similarity Definition. The surface similarity function is
a normalized Gaussian-like function of the differences between
the molecular features of two molecules. Features are mea-
sured on the surface of a sphere surrounding a molecule. The
radius of the sphere is 2 Å over the maximum possible distance
between two atoms in the molecule. Figure 9 illustrates the
molecular features for a small molecule in two dimensions.
At each point, six values are reported, two each for the steric,
polar positive, and polar negative features. The first number
reported is the molecule’s inverse field strength (defined
below), which can be thought of as the distance to an electron
density isosurface of the molecule in Angstroms. The second
number is the degree of directional match of the molecule with
respect to the feature reference point. Note the relationship
between directionality of the donor atoms and the acceptor
atoms with respect to the feature point locations.

For a particular conformation and alignment of a molecule
(a pose), the features are formally defined as follows. For the
pure shape component, a molecular field is defined, which falls
off exponentially with distance from the molecular surface
(approximated as the van der Waals surface). The field values
at a set of points placed uniformly on a sphere form the shape
component of the feature representation. For convenience,
inverse field strength values are used, as they can be thought
of as having units of Angstroms. Let ai denote the position of
atom i and ri denote its van der Waals radius. Let pi denote
the position of feature point i. Also, let d denote the Euclidean
distance between two point positions. Then:

Table 6. Measured versus Predicted Rank Order of Drugs
Based on Fraction Absorbed, from Highest to Lowest

measured predicted

metoprolol alprenolol
nordiazepam diazepam
diazepam oxprenolol
oxprenolol phenazone
phenazone pindolol
oxazepam nordiazepam
alprenolol oxazepam
practolol atenolol
pindolol tranexamicacid
ciprofloxacin practolol
metolazone ciprofloxacin
tranexamicacid olsalazine
atenolol metoprolol
sulpiride sulpiride
mannitol metolazone
foscarnet sulfasalazine
sulfasalazine mannitol
olsalazine foscarnet
lactulose lactulose
raffinose raffinose Figure 9. Molecular features for a simple molecule (2D slice).

At each point around the molecule, values are reported in pairs
for steric (S), polar positive (P+), and polar negative (P-)
features of the molecule. The first number in each pair
represents the inverse field strength of the feature, and the
second number in each pair represents the directionality
component of the feature.
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where D is simply the distance from a point to the van der
Waals surface of a molecule. For the experiments reported
here, R ) 10.0. The function fi is the sum of the exponentially
decreasing fields of each of j atoms, and Fi is the inverse field
function which yields an Angstrom-like unit. Note that Fi is
continuous and differentiable with respect to the pose of m.
This is a critical feature since many optimization techniques
rely on well-defined gradients.

Defining the polar features is slightly more complicated.
While it is possible to define a polar field in the same manner
as the steric field based on the subset of atoms that have the
proper polarity, this ignores the important contribution of
directionality in many polar interactions. If we imagine our
feature reference points to be observers looking for a particular
polarity emanating from a particular direction, it is possible
to define two values: one corresponding to field strength and
one corresponding to directional compatibility.

The polar field value at a feature point is defined similarly
to the shape field, except that, instead of distances relative to
each atomic surface dominating the measured field, directional
match to each polar atom is used. At each feature point, both
positive and negative polar features are computed. The fol-
lowing describes the computation for positive polar features.
The computation for negative polar features is analogous. Each
atom j of m that can participate as a hydrogen-bond donor or
a positively charged salt-bridging moiety is identified. For each
of these, a direction is defined corresponding to a unit length
vector pointing from the centroid of atoms connected to j to j
itself (denoted uj below). For each feature point i, vi denotes a
unit length vector pointing at the center of the sphere on which
the feature point resides. The final unit length vector wij points
from pi to aj. The polar field strength S at point i is defined as
follows:

For the experiments reported here, â ) 0.6. At each feature
point, the polar field value is dominated by the most favorable
interaction on the molecule from a directional perspective. This
value ignores proximity. As discussed above, proximity must
be measured relative to the dominating interaction. This value
is the distance to each polar atom weighted by its contribution
to the field strength at pi. The distance is normalized by the
total strength at pi. The result is as follows:

This yields a weighted distance, with the most important polar
interaction dominating the computation. The analogous com-
putation is done for acceptors. For convenience in defining the
surface similarity function, we define S for the steric compo-
nent of the feature representation to be 1 for all feature points.

To summarize, the feature representation for a molecule m
in a particular pose is a set of six values per feature point:
three pairs of feature values and strengths with one pair for

each of pure shape, positive polar, and negative polar compo-
nents. Each of the feature values can be thought of as having
units of Angstroms, and each of the strengths is between 0
and 1.

The surface similarity function is very simple. For conven-
ience, let Fi denote the full set of feature values (including
steric, positive polar, and negative polar) and Si denote the
full set of strength values. Then, the surface similarity s of
molecules m1 and m2 in a particular relative alignment and
in particular conformations is:

So, if the poses of two molecules have identical feature values
and strengths, the function s will return a value of 1.0. Any
deviations from noncoincidence will decrease the value of s,
with a minimum of 0. Places where no polar strength is
observed received little weight with regard to concordance of
polar feature values. Note that the metric is symmetrical with
respect to the molecules. For the experiments reported here,
σ1 ) 2.0 and σ2 ) 1.0.

Molecular Hashkey Computation. A hashkey is com-
puted by first sampling the conformations of a molecule. For
this work, stochastic sampling with a maximum of 20 confor-
mations was used, beginning from protonated, MM327-
minimized Concord28-generated three-dimensional structures.
The protonation states for acidic and basic groups were
assigned using heuristics to reflect the state of the molecule
at neutral pH. Rings were not searched, and bump relaxation
was utilized in lieu of full minimization of each of the resulting
conformations. Each Hi in the hashkey of molecule M is simply
the surface similarity of the best-matching conformation of M
in its maximally similar alignment to Bi (basis molecule i (see
Figure 1)).

All computations were performed on desktop Silicon Graph-
ics workstations, with processor configurations including
R4400, R5000, and R10000, each with 128 Mb of RAM. Each
surface similarity computation takes 5-8 s per conformer.
Each hashkey computation thus requires 30-45 processor
minutes. Note, however, that the hashkey computation itself
is highly parallel in nature, for both individual molecules and
collections of molecules. The speedup realized by adding more
processors scales linearly. For significantly larger sets of
molecules, farms of inexpensive compute engines (e.g., midrange
personal computers) can be easily deployed to provide a
computational throughput proportional to the number of
processors.

Pair Rank Correlation Coefficient and Statistical
Significance. The PRCC is a nonparametric measure of rank
order correlation, related to Kendal’s tau, but with the addition
of a real-valued notion of “ties” in rank.16 Given two lists, the
first the target values of a prediction and the second the
predicted values, the PRCC is simply the number of correctly
ranked pairs divided by the number of pairwise comparisons.
A parameter ∆ gives the difference between two target values
that is considered sufficient to warrant a comparison of rank.
So, in the example of PRCC of similarities correlated with
hashkey distances, ∆ was 0.05, which is the level at which
two surface similarity values should be considered different.
For the oral bioavailability data, ∆ was 0.0, and for the log P
data, ∆ was 1.0. All computations of p values were done
numerically using the precise distribution of the target values
by generating large sets of random correlations to estimate
likelihood of observing high PRCC values by chance. This
yields a very accurate measurement of statistical significance.

Fi(m) )
-log(Fi(m))

R

Fi(m) ) ∑
j

e-RDij

Dij ) d(pi,aj) - rj

Si
d(m) )

-log(Si
d(m))

R

Si
d(m) ) ∑

j

e-RPij

Pij ) - 1

1 + e-R((viwij)(-uj‚wij)-â)

Fi
d(m) )

∑
j

e-RPijDij

∑
j

e-RPij

s(m1,m2) )

∑
i

max(Si(m1),Si(m2))‚g(Fi(m1) - Fi(m2),σ1)‚g(Si(m1) - Si(m2),σ2)

∑
i

max(Si(m1),Si(m2))

g(x,σ) ) e-x2/σ
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